Aaron E. Tallman, PhD.

Assistant Professor

Department of Mechanical and Materials Engineering

Florida International University, Miami, FL

U.S. Citizen

EMPLOYMENT RECORD AT FIU

Assistant Professor

Aug. 2021-Present

FACULTY ACADEMIC EXPERIENCE

Assistant Professor of Mechanical and Materials Engineering, FIU

NON-ACADEMIC EXPERIENCE

Los Alamos National Laboratory – Postdoctoral Research Associate

Aug. 2018- Aug. 2021

Georgia Institute of Technology | Atlanta, GA Materials Science and Engineering

PhD 2018

Dissertation: Hierarchical multiscale materials modeling: Calibration, uncertainty quantification, and decision support

Georgia Institute of Technology | Atlanta, GA Materials Science and Engineering

M.S. 2015

Rice University | Houston, TX

Materials Science and Engineering

B.S. 2012

Rice University | Houston, TX

EDUCATION

Visual and Dramatic Arts

B.A. 2012

PEER REVIEWED PUBLICATIONS (11)

- M. Yaghoobi, T. Berman, Z. Chen, **A. E. Tallman**, et al. "Recent Advances in PRISMS-Plasticity Software for Simulation of Deformation in Mg Alloys." *Magnesium Technology* **2024**.
- **A. E. Tallman** and M. Yaghoobi, "PRISMS Indentation: Open-Source simulations of indentation testing using crystal plasticity." *Integrating Materials and Manufacturing Innovation*, **2024**.
- **A. E. Tallman,** D. John, T. Paul, A. Agarwal, "Uncertainty Quantification of a High-Throughput Profilometry-Based Indentation Plasticity Test of Al 7075 T6 Alloy." *Frontiers in Materials*, **2022**.
- **A. E. Tallman**, R. Pokharel, D. Bamney, D. E. Spearot, R. A. Lebensohn, D. Brown, L. Capolungo, "Data-Driven Analysis of Neutron Diffraction Line Profiles: Application to Plastically Deformed Ta," *Scientific Reports*, **2022**.
- **A. E. Tallman**, M. Arul Kumar, C. Matthews, and L. Capolungo, "Surrogate Modeling of Mechanistic Viscoplasticity: Application to Transient Conditions in HT-9 Cladding," *The Journal of The Minerals, Metals & Materials Society*, 2020. https://doi.org/10.1007/s11837-020-04402-2.
- **A. E. Tallman**, M. Arul Kumar, A. Castillo, W. Wen, L. Capolungo, and Carlos. N. Tomé, "Data-driven constitutive model for the inelastic response of metals: application to 316H steel," *Integrating Materials and Manufacturing Innovation*, 2020. https://doi.org/10.1007/s40192-020-00181-5.
- **A. E. Tallman**, L. P. Swiler, Y. Wang, and D. L. McDowell, "Uncertainty propagation in reduced order models based on crystal plasticity," *Computer Methods in Applied Mechanics and Engineering*, vol. 365, p. 113009, Jun. 2020. https://doi.org/10.1016/j.cma.2020.113009.
- D. Bamney, **A. E. Tallman**, L. Capolungo, D. E. Spearot, "Virtual diffraction analysis of dislocations and dislocation networks in discrete dislocation dynamics simulations." *Computational Materials Science*, vol. 174, 2020. https://doi.org/10.1016/j.commatsci.2019.109473.
- **A. E. Tallman**, K. S. Stopka, L. P. Swiler, Y. Wang, S. R. Kalidindi, and D. L. McDowell, "Gaussian-Process-Driven Adaptive Sampling for Reduced-Order Modeling of Texture Effects in Polycrystalline Alpha-Ti." *The Journal of The Minerals, Metals & Materials Society*, vol. 71, no. 8, 2019. https://doi.org/10.1007/s11837-019-03553-1.

- **A. E. Tallman**, L. P. Swiler, Y. Wang, and D. L. McDowell, "Hierarchical top-down bottom-up calibration with consideration for uncertainty and inter-scale discrepancy of Peierls stress of bcc Fe." *Modelling and Simulation in Materials Science and Engineering*, vol. 27, no. 6, 2019. https://doi.org/10.1088/1361-651X/ab23e4.
- **A. E. Tallman**, L. P. Swiler, Y. Wang, and D. L. McDowell, "Reconciled Top-down and Bottom-up Hierarchical Multiscale Calibration of bcc Fe Crystal Plasticity." *International Journal of Multiscale Computational Engineering*, vol. 15, no. 6, 2017. https://doi.org/10.1615/IntJMultCompEng.2017021859.

EDITED BOOK CHAPTERS (1)

A. E. Tallman, L. P. Swiler, Y. Wang, and D. L. McDowell, "14 - Hierarchical multiscale model calibration and validation for materials applications," in *Uncertainty Quantification in Multiscale Materials Modeling*, Y. Wang and D. L. McDowell, Eds. Woodhead Publishing, 2020, pp. 449–471.

PAPERS IN PROGRESS (5) Advisees at FIU underlined

- **A. E. Tallman,** M. Yawney, and A. Coso Strong, "It's about communication, but it is not about communication': A Collaborative Exploration of Oral Communication Events as Learning" planned submission in *Teaching in Higher Education*.
- E. Michalakis, M. W. Priddy, A. E. Tallman, "Effective Hardening models in Profilometry-based Indentation Plastometry with Model Form Uncertainty Quantification" planned submission in *Computational Methods in Applied Mechanical Engineering*.
- C. Puentes, <u>A. M. Rodriguez Negron</u>, <u>D. Kundal</u>, **A. E. Tallman**, "Optical Profilometry-based analysis of anisotropy in indentation testing of cold spray Al 7075" planned submission in *Advances in Manufacturing*.
- A. M. Rodriguez Negron, A. E. Tallman, "An open-source toolkit for nucleation-controlled property optimization in beta-stabilized Ti alloys" planned submission in *Integrating Materials and Manufacturing Innovation*.
- A. K. Blanchard, A. E. Tallman, A. Hamrani, "Enhancing Supersonic Efficiency: Comprehensive Aerodynamic Optimization of NASA's X59 Aircraft with FFD and Navier-Stokes Techniques." planned submission in *Journal of Optimization Theory and Applications*.

INVITED PRESENTATIONS (4)

- **A. E. Tallman** and M. Yaghoobi, "PRISMS Indentation: Multi-scale elasto-plastic virtual indentation module." presented at the annual PRISMS workshop 2023, Ann Arbor, MI, 10-Aug-2023.
- **A. E. Tallman**, D. John, T. Paul, A. Agarwal, "Uncertainty Quantification of a high-throughput local plasticity test: profilometry-based indentation plastometry of Al 7075 T6 Alloy." presented at the Materials Science and Technology technical meeting, Pittsburgh, PA, 10-Oct-2022.
- **A. E. Tallman** and L. Capolungo, "Developing Surrogate Models for Crystal Plasticity-based Creep by Leveraging Macroscale Constitutive Relations," presented at the Materials Science and Technology technical meeting, Columbus, OH, 14-Oct-2021.
- **A. E. Tallman**, R. Pokharel, D. Brown, and L. Capolungo, "Synthetic Data-Driven Predictions of Dislocation Density from Polycrystalline Ta Neutron Diffraction Line Profiles," presented at the International Materials Applications and Technologies ASM Annual Meeting 2021, St. Louis, MO.

Title	Venue	Date
Computational Uncertainty Quantification (Short Course)	The Materials Society (TMS): Accelerating VVUQ	Aug. 19 th , 2024
Reach Through: Immersive Technical Communication for graduate engineering students	FIU Theater Department	Sept. 30 th , 2022, May 5 th , 2023,
		May 3 rd , 2024
Reach Through: Immersive Technical Communication (Abridged)	CELL-MET Retreat FIU	Feb. 16 th , 2023

RESEARCH FUNDING AND GRANT APPLICATIONS

Funding awarded as PI at FIU: \$215,957.50

Completed

Investigators: PI Aaron Tallman

Grant Title: ICME-based Modeling of Metallic Materials

Agency: Honeywell Federal Manufacturing & Technologies

Dates: 4/18/2023-8/31/2023

Funding: \$87,997.50

Investigators: PI Aaron Tallman

Grant Title: ICME-based Modeling of Metallic Materials - Gap Agency: Honeywell Federal Manufacturing & Technologies

Dates: 9/01/2023-11/30/2023

Funding: \$22,000.00

<u>Awarded</u>

Investigators: PI Aaron Tallman

Grant Title: ICME-based Modeling of Metallic Materials

Agency: Honeywell Federal Manufacturing & Technologies

Dates: 3/01/2024-8/31/2024

Funding: \$105,960.00

Applied-Under Review

Investigators: FIU PI Aaron Tallman
Collaborators: UF PI Yong Yang

Grant Title: ICME-based Modeling of Metallic Materials

Agency: Nuclear Regulatory Commission

Dates: 10/01/2024-9/30/2027

Funding: \$237,500 (FIU portion of \$500,000)

Investigators: PI Aaron Tallman Key Personnel: Michael Yawney

Grant Title: CAREER: Precise local mesoscale property determination through integrating uncertainty

quantification of experiments and simulations of spherical micro-indentation plastometry

Agency: National Science Foundation - Mechanics of Materials and Structures

Dates: 7/01/2025-6/31/2030

Funding: \$550,449

Investigators: PI Aaron Tallman Key Personnel: Michael Yawney

Applied – Not Funded

Investigators: PI Aaron Tallman Key Personnel: Alexandra Coso Strong and Michael Yawney

Grant Title: CAREER: Informative Bayesian stochastic plasticity fingerprinting of process-intensive metal

components

Agency: National Science Foundation -Mechanics of Materials and Structures

Dates: 7/01/2024-6/31/2029

Funding: \$590,449

Investigators: PI Aaron Tallman

Grant Title: 3D Printed BN Nanoreinforced Bimetallic Composites to Target Dimensional Stability

Agency: National Aeronautics and Space Administration -Early Career Faculty

Dates: 10/01/2022-9/30/2025

Funding: \$599,976.00

In Preparation

Investigators: PI Aaron Tallman

Collaborators: Matthew W. Priddy, Carolyn Seepersad

Grant Title: Uncertainty Quantification of microstructure sensitive design for Fatigue in Additively

manufactured Ti6Al4V Lattice Structures

Agency: National Nuclear Security Administration PSAAP-IV

Dates: 9/01/2025-8/30/2030

Funding: \$3,500,000.00 (My funding \$1,250,000.00 -- 33%,)

SERVICE ACTIVITIES

National Service

- TMS Planning Committee Member: Integrated Computational Materials Engineering
- TMS Planning Committee Member: Mechanical Behavior of Materials
- Member of International Association for Computational Mechanics
- NSF Review panelist, NSF Ad Hoc Reviewer
- Review Editor of Frontiers in Materials Computational Materials Science
- Referee for 7 Journals: IJP, Computational Materials Science, JOM, IMMI, Materials Letters, Steel Research Intl., Adv. in Eng. Soft.
- Referee for 1 Book Chapter: Uncertainty Quantification in Multiscale Materials Modeling
- Referee for 1 Conference paper: SIAM UQ

Departmental Service

- Judge: Poster Session AMERI 2022 MESH Conference March 18th
- MME Curriculum Committee 2021-2023
- MME Strategic Planning Committee 2022-2023
- Search Committee Member Open Rank, Tenure Track Professor, Computational Thermo Fluid Mechanics (Job ID: 528031) 2022-2023
- Search Committee Member: Open Rank Computational Thermal Fluids 2022-2023

College/University Service

- ECE Information Technology Committee 2022-2023
- Honors College New course proposal 2023

TEACHING

Course	Term	Level	SPOTS	Avg. SPOTS* Overall
Course	Terrir	LCVCI	Responses/Enrollment	Rating
EMA5104 Adv. Mech. Prop. of Materials	Fall 2021	G	6/8	4.70
EML4551 Ethics and Design Project Org.	Spr. 2022	UG	44/79	4.81
EMA5104 Adv. Mech. Prop. of Materials	Fall 2022	G	2/5	4.80
EML2032 Intro. To Programming for ME	Spr. 2023	UG	20/48	3.77
EML2032 Intro. To Programming for ME	Fall 2023	UG	40/48	4.23

^{*}Averages per category are based on a 5-point scale. Excellent = 5; Very Good = 4; Good = 3; Fair = 2; Poor = 1

TEACHING INNOVATIONS

Course	Term	Innovation
EMA5104 Adv. Mech.	Fall 2021	Project based learning: Report, peer-review, and final presentation on student
Prop. of Materials		choice of material failure
EML4551 Ethics and	Spr. 2022	Technology: Developed a custom algorithm for the optimal matching of students
Design Project Org.		into teams
EML2032 Intro. To	Spr. 2023	Technology: Use of online platforms for programming assignments and lectures
Programming for ME		(Google Colab)
EML2032 Intro. To	Spr. 2023	Project-based learning: Designed sequence of graded assignments for students to
Programming for ME		learn through doing
EML2032 Intro. To	Fall 2023	Technology: Heuristic Grading of assignments using a custom developed
Programming for ME		algorithm (to relieve TA shortages)
EML2032 Intro. To	Spr. 2024	Learner-focused teaching: Lectures adapted to make pair-work using interactive
Programming for ME		notebooks during class time, each pair moving at own pace

MENTORING

PhD Student Advising (* Denotes Externally Funded)				
Student Name	Program	Role Year	[Projected Graduation]	
Astrid Michelle Rodriguez	PhD Materials Science	Advisor	2022 – [2027]	
Negron*	Engineering			
Fatama Huda*	PhD Mechanical Engineering	Advisor (Co-advised by D. Dickerson)	2023 – [2027]	
Dharmanshu Kundal	PhD Mechanical Engineering	Advisor	2023 – [2027]	
Emmanuel Michalakis	PhD Mechanical Engineering Mississippi State University	Co-Major Professor (Adviso M.W. Priddy)	r 2022 – [2028]	
Ann Kanaya Blanchard	PhD Mechanical Engineering	Co-Major Professor (Adviso A. Hamrani)	r 2023 – [2024]	
Maria Karla Sotolongo	PhD Mechanical Engineering	Committee Member (Advisor B. Boesl)	2023 – [2025]	
Somnath Somadder	PhD Mechanical Engineering	Committee Member (Advisor A. Agarwal)	2023 – [2027]	

Undergraduate Research Advising

Christian Puentes 2023-2024
Jose Diaz-Lanza 2024Audrey Torres 2024-

Senior Design Project Advisor

Students	Project	Years
Nateish Taylor, Alex Aviles, Bryan Baquero, Diego	Solar Harvesting	2021-2022
Concepcion		
Lucas Kapusta, D'angelo Serra, Eduardo Hidalgo, Lucas	Electric Charging Station	2022
Woginger		
Camilo Martinez Vazquez, Abdiel Hernandez, Tenbite	Wave Energy on a Budget	2023
Tesfaye, Kiana Murat		