HIGH TEMPERATURE VACUUM SYSTEM

Motivation

- Contribute in the development of high vacuum high temperature furnace used for manufacturing of retinal implants
- Fundamental Heat Transfer, materials, and programming knowledge

Problem Statement

- Braze Titanium metal with 96% alumina ceramic using gold as a filler material
- Archive brazing in vacuum system in less than 20 seconds

Objective

- Design and manufacturing of minifurnace to work in vacuum
- Design and assembly of system inside vacuum
- Programming of control
- Heat transfer simulation analysis

January 11 Task Name 9/30 | 10/21 | 11/11 | 12/2 | 12/23 | 1/13 | 2/3 2/24 3/17 4/7 **Project Discussion** 14 days 36 days Research Alternative Designs 61 days 7 days Final Design 17 days Cost Anaylsis Model & Simulations 19 days Prototype and Testing 14 days Product Manufacturering 36 days 35 days Testing Final Report 29 days Prepare for Presentation 17 days 1 day Final Presentation

Final Design

- •Single hot zone alumina furnace with tungsten wire, and zirconia insolation
- Linear mechanism for vertical motion

Analysis

- Radiation heat transfer analysis in SolidWorks
- Furnace
- Linear mechanism

Christopher Sequera

Project Advisor

Dr. W. Kinzy Jones