Problem Statement

Design and build a sub folding machine that meets all governmental regulations and requirements, while being a safe, efficient, practical and cost effective solution.

Objectives

- Reduce employee involvement in a tedious task
 - Process automation and expandability
- Utilize vacuum sealing technology and thermal plastics to extend the product lifespan

Timeline

Proposed Design

- Mechanical design with limited moving parts
- Meet FDA and ISO standards
- Build in an ISO 9000 Certified facility
- Modular design for expandability and maintenance

Motivation

- Gain business and engineering knowledge with consumer goods
 - Reduce time spent on tedious yet necessary duties
 - Enhance the quality of end products

Prototype and Testing

For practicality, certain parts of the prototype will be built out of PLA and ABS. This will allow rapid iterations at a reduced cost while allowing for minimal time investment. Key components will be simulated in ANSYS and SolidWorks using specified materials.

Team Members

Daniel Pijeira

Carlos Bonilla

Literature survey Conceptual Design Cost Analysis Solidworks Design Analytical & Structural Analysis Construction Prototype Testing

Tasks

Advisor

Dr. Benjamin Boesl